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Summary:

Many modern datasets are sampled with error from complex high-dimensional surfaces. Methods 

such as tensor product splines or Gaussian processes are effective and well suited for 

characterizing a surface in two or three dimensions, but they may suffer from difficulties when 

representing higher dimensional surfaces. Motivated by high throughput toxicity testing where 

observed dose-response curves are cross sections of a surface defined by a chemical’s structural 

properties, a model is developed to characterize this surface to predict untested chemicals’ dose-

responses. This manuscript proposes a novel approach that models the multidimensional surface as 

a sum of learned basis functions formed as the tensor product of lower dimensional functions, 

which are themselves representable by a basis expansion learned from the data. The model is 

described and a Gibbs sampling algorithm is proposed. The approach is investigated in a 

simulation study and through data taken from the US EPA’s ToxCast high throughput toxicity 

testing platform.
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1. Introduction

Chemical toxicity testing is vital in determining the public health hazards posed by chemical 

exposures. However, the number of chemicals far outweighs the resources available to 

adequately test all chemicals, which leaves knowledge gaps when protecting public health. 

For example, there are over 80, 000 chemicals in industrial use with fewer than 600 subject 

to long term in vivo studies conducted by the National Toxicology Program, and most of 

these studies occur only after significant public exposures.
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As an alternative to long term studies, there has been an increased focus on the use of high 

throughput bioassays to determine the toxicity of a given chemical. To such an end, the US 

EPA ToxCast chemical prioritization project (Judson et al., 2010) was created to collect 

dose-response information on thousands of chemicals for hundreds of in vitro bioassays, and 

it has been used to develop screening methods that prioritize chemicals for study based upon 

in vitro toxicity. Though these methods have shown utility in predicting toxicity for 

chemicals that pose a risk to the public health, there are many situations where the in vitro 
bioassay information may not be available (e.g, a chemical may be so new that it has not 

been studied). In these cases, it would be ideal if toxicity could be estimated in silico by 

chemical structural activity relationship (SAR) information. Here the goal is to develop a 

model based on SAR information that predicts the entire dose-response for a given assay. 

This manuscript is motivated by this problem.

1.1 Quantitative Structure Activity Relationships

There is a large literature estimating chemical toxicity from SAR information. These 

approaches, termed Quantitative Structure Activity Relationships (QSAR) (for a recent 

review of the models and statistical issues encountered see Emmert-Streib et al. (2012)), 

estimate a chemical’s toxicity from the chemical’s structural properties. Multiple linear 

regression has played a role in QSAR modeling since its inception (Roy et al., 2015, p. 191), 

but models where the predictor enters into the model as a linear function often fail to 

describe the relationship. To address this, approaches such as neural networks (Devillers, 

1996), regression trees (Deconinck et al., 2005), support vector machines (Czermiński et al., 

2001; Norinder, 2003), and Gaussian processes (Burden, 2001) have been applied to the 

problem with varying levels of success. These approaches have been tailored to scalar 

responses, and, save one instance, have not been used to model the dose-response 

relationship.

The only QSAR approach that has addressed the problem of estimating a dose-response 

curve is the work by Low-Kam et al. (2015). This approach defined a Bayesian regression 

tree over functions where the leaves represent a different dose-response surface. It was used 

to identify chemical properties related to the observed dose-response, and when this 

approach was applied to prediction the approach sometimes performed poorly in a leave-

one-out analysis.

1.2 Relevant Literature

Assume that one obtains a P dimensional vector s ∈ 𝒮, wanting to predict a Q dimensional 

response over d ∈ 𝒟 from s. Given s (e.g., SAR characteristics in the motivating problem) 

and d (e.g., doses in the motivating problem) one is interested in estimating an unknown P + 

Q dimensional surface h : (𝒮 × 𝒟) ℝ where response curve i is a cross section of h(s, d) at 

si. Figure 1 describes this in the case of the motivating example; two 1-dimensional cross 

sections (black lines) of a 2-dimensional surface are observed and one is interested the entire 

2-dimensional surface.

One may use a Gaussian process (GP) (Rasmussen and Williams, 2006) to characterize the 

entire P + Q dimensional surface, but there are computational problems that make the use of 
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a GP impractical. In the motivating example, there are over 4000 unique (s, d) pairs. GP 

regression requires inversion of the covariance matrix, which is inherently an 𝒪(n3)
operation; inverting a 4000 × 4000 matrix in each iteration of a Gibbs sampler is 

challenging. Though the covariance matrix may be approximated leading to reduced 

computational burden (e.g., Quiñonero-Candela and Rasmussen (2005), Banerjee et al. 

(2013)), it is the author’s experience that, in the data example, such approximations were 

accurate when the dimension of the approximation approaches that of the matrix it is 

approximating. This leads to minimal computational savings. Further, if the approximation 

approach can be used, the proposed method can be used in conjunction with such 

approximations.

As an alternative to GPs, one can use tensor product splines (de Boor, 2001, chapter 17), 

which are frequently based on 1-dimensional spline bases; however, even if one defines a 1-

dimensional basis having only two basis functions for each dimension, the resulting tensor 

spline basis would have dimension 2P+Q, which is often computationally intractable. The 

proposed model sidesteps these issues by defining a tensor product of two surfaces defined 

on 𝒮 and 𝒟.

Rather than focus on nonparametric surface estimation using GPs or tensor product splines, 

one could consider the problem from a functional data perspective (Ramsay, 2006; Morris, 

2015). As there is interest in the dose response curve defined on 𝒟, 𝒮 could enter into the 

model through an additive smooth function; however, if there is an interaction between 𝒟
and 𝒮 such an approach may not capture the true response surface. To address possible 

interactions, the functional linear array model (Brockhaus et al., 2015) and functional 

additive mixed models (Scheipl et al., 2015) allow the surface to be modeled as a basis 

defined on the entire space. For high dimensional spaces where interactions are appropriate, 

these approaches only allow the additive terms to depend on one or two dimensions in 𝒮, 

making it difficult to represent higher-order interaction effects.

Clustering the functional responses is also a possibility. Here, one would model the surface 

using 𝒟 and cluster using 𝒮. There are many functional clustering approaches (see for 

example Hall et al. (2001), Ferraty and Vieu (2006), Zhang and Li (2010), Sprechmann and 

Sapiro (2010), Delaigle and Hall (2013), and references therein), but these methods predict 

s ∈ 𝒮 based upon observing the functional response f(d), which is the opposite of the 

problem at hand. In this problem, one observes information on the group (i.e., s), and one 

wishes to estimate the new response (i.e., h(s, d)). However different, such approaches can 

be seen as motivating the proposed method. The proposed approach assumes loadings are 

values on a function defined on 𝒮 inducing similarity for any responses having sufficiently 

close values in 𝒮. As loadings are now functions, a new basis is created where each basis 

function is the tensor product of functions in 𝒮 and 𝒟.

The proposed approach creates a new basis, and the number of basis functions may impact 

the model’s ability to represent an arbitrary surface; to model complicated surfaces, a large 

number of basis functions are included in the model. Parsimony in this set is ensured by 

adapting to the number of components using the multiplicative gamma prior (Bhattacharya 
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and Dunson, 2011) on the surface loadings. This is a global shrinkage prior that removes 

components from the sum by stochastically decreasing the prior variance of consecutive 

loadings to zero. In the manuscript where it was proposed, it was used to overfit the number 

of factors in a factor analysis; here, it is used to provide an accurate fit.

An alternative way to look at the proposed approach that of an ensemble learner (Sollich and 

Krogh, 1996), for which there is a vast literature (see Murphy (2012) and references 

therein). Ensemble learning includes techniques such as bagging (Breiman, 1996) and 

random forests (Breiman, 2001) and describe the estimate as a weighted sum of learners. 

The proposed model can be looked at as a weighted sum over tensor product learners.

In what follows, Section 2 defines the model. Section 3 gives the data model for normal 

responses and outlines a sampling algorithm. Section 4 shows through a simulation study the 

method outperforms many traditional machine-learning approaches such as treed Gaussian 

processes (Gramacy and Lee, 2008) and boosted neural networks (Zhou et al., 2002). 

Section 5 is a data example applying the method to data from the US EPA’s ToxCast 

database.

2. Model

2.1 Basic Approach

Consider modeling the surface h : (𝒮 × 𝒟) ℝ where 𝒮 ⊂ ℝP, P ⩾ 1, and 𝒟 ⊂ ℝQ, Q ⩾ 1. 

Tensor product spline approaches (de Boor, 2001, chapter 17) approximate h as a product of 

spline functions defined over 𝒮 and 𝒟, i.e.,

g ⊗ f = g(s) f (d),

for g : 𝒮 ℝ and f : 𝒟 ℝ. The tensor product spline defines g and f to be in the span of a 

spline basis. Assuming g and f are functions in the span of {ϕ j(s)}
j = 1
J  and {ν j(d)}

l = 1
L , that is

g(s) = ∑
j = 1

J
λ jϕ j(s),

and

f (d) = ∑
l = 1

L
γlνl(d),

the tensor product spline is

g ⊗ f = ∑
j = 1

J
∑

l = 1

L
ρ jlϕ j(s)νl(d),
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where ρjl = λjγl, and multiple 1-dimensional spline bases are used when P + Q > 2. As this 

approach typically uses 1- or 2-dimensional spline bases, when the dimension of (𝒮 × 𝒟) is 

large the tensor product becomes impractical as the number of functions in the tensor 

product increases exponentially.

Where tensor product spline models define the basis a priori, some functional data 

approaches (e.g, Montagna et al. (2012)) model functions from a basis learned from the data. 

In these cases, the function space may not be defined over (𝒮 × 𝒟), but is constructed on a 

smaller dimensional subspace (𝒟 in the present discussion). For the cross section at si, this 

approach models h(si, d) in the span of a finite basis {f1(d), …, fK(d)}. That is,

h(si, d) = ∑
k = 1

K
zik f k(d), (1)

where (zi1, …, ziK)′ is a vector of basis coefficients. This effectively ignores 𝒮, which may 

not be reasonable in many applications.

To model h(s, d) over (𝒮 × 𝒟), the functional data and tensor product approaches can be 

combined. The idea is to define a basis over (𝒮 × 𝒟) where each basis function is the tensor 

product of two surfaces defined on 𝒮 and 𝒟. Extending (1), define {g1(s), …, gK(s)} to be 

surfaces on 𝒮, and replace each zik with ζkgk(si). Now, loadings are continuous functions on 

s, and a new basis {g1 ⊗ f1, …, gK ⊗ fK} is constructed with

h(s, d) = ∑
k = 1

K
ζkgk(s) ⊗ f k(d) . (2)

This model is similar to Brockhaus et al. (2015), but it allows for the dimension of 𝒮 to be 

greater than two and models h(s, d) using multiple tensor products gk ⊗ fk.

For the tensor product, the functions {gk(s)}
k = 1
K  and { f k(d)}

k = 1
K  must be in a linear function 

space (de Boor, 2001, p. 293). Define

gk~𝒢𝒫(0, σk
g( ⋅ , ⋅ )),

and

f k~𝒢𝒫(0, σk
f ( ⋅ , ⋅ )),

where σk
g( ⋅ , ⋅ ) and σk

f ( ⋅ , ⋅ ) are positive definite kernel functions. This places gk and fk, k = 

1, …, K, in a reproducing kernel Hilbert space defined by σk
g( ⋅ , ⋅ ) or σk

f ( ⋅ , ⋅ ), and embeds 

h(s, d) in a space defined by the tensor product of these functions.
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One may mistake this approach as a GP defined by the tensor product of covariance kernels 

(e.g., see Bonilla et al. (2007)). That approach forms a kernel over (𝒮 × 𝒟) as a product of 

individual kernels defined on 𝒮 and 𝒟. For the proposed model, the tensor product is the 

modeled function and not the individual covariance kernels resulting in a stochastic process 

that is no longer a GP.

2.2 Selection of K

The value of K determines the number of elements in the basis. The larger K the richer the 

class of functions the model can entertain. In many cases, one would not expect a large 

number of functions to contribute and would prefer as few components possible. One could 

place a prior on K, but it is difficult to find efficient sampling algorithms in this case. As an 

alternative, the multiplicative gamma process (Bhattacharya and Dunson, 2011) can define a 

prior over the ζ1, …, ζk that allows the sum to adapt to the necessary number of 

components. Here,

ζk~N 0, ϕ ∏
j = 1

k
δ j

−1
,

with ϕ ~ Ga(1, 1) and δk ~ Ga(a1, 1) ⩽ k ⩽ K. This is an adaptive shrinkage prior over the 

functions. If a1 > 1, the variances are stochastically decreasing favoring more shrinkage as k 
increases. For large k, ζkgk(s)fk(d) nears zero, which implies many of the basis functions 

contribute negligibly to modeling the surface.

The choice of a1 defines the level of shrinkage. If a1 is too large, the model will have too few 

components contributing to the sum, and if it is too small no shrinkage will take place. In 

practice, inference from the multiplicative gamma process is robust to choices in a1, and 

nearly identical inference was obtained when 1.5 ⩽ a1 ⩽ 5 for the data example. Following 

Bhattacharya and Dunson (2011), the choice of a1 = 2 is reasonable for many applications, 

and it is used in what follows.

2.3 Relationships to Other Models

Though GPs are used in the model specification, one may use polynomial spline models or 

process-convolution approaches (Higdon, 2002). Depending on the choice, (2) can 

degenerate into other methods. For example, if σ1
g, …, gK − 1

g  and σK
g  are defined as white 

noise kernels and f1(s), ⋯, fK(s) are in the span of the same basis, the model is identical to 

the approach of Montagna et al. (2012). In this way, the additive adaptive tensor product 

model can be looked at as a functional model with loadings correlated by a continuous 

stochastic process over 𝒮.

If the functions gk and fk are defined using a spline basis, this approach degenerates to the 

tensor product spline model. Let each function in {f1(d), …, fk(d} be defined using a 

common basis, with,
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f k(d) = ∑
ℓ = 1

L
βℓνℓ(d),

where {νℓ(d)}ℓ = 1
L  is a basis used for all fk(d). In this case, model (2) can be re-written as

h(s, d) = ∑
k = 1

K
∑

ℓ = 1

L
ζkβℓgk(s)νℓ(d) .

Letting βlk
∗ = ζkβℓ, one arrives at a tensor product model with learned basis {g1(s), …, 

gK(s)} defined over 𝒮 and specified basis {νℓ(d)}ℓ = 1
L  defined over 𝒟.

2.4 Computational Benefits

When 𝒟 is observed on a fixed number of points and s is the same for each cross section, the 

proposed approach can deliver substantial reductions in the computational resources needed 

when compared to GP regression. Let r be the number of unique replicates on 𝒟, and let n 
be the total number of observed cross sections. For a GP, the dimension of the corresponding 

covariance matrix is rn. Inverting this matrix is an 𝒪( rn 3) operation. For the proposed 

approach, there are K inversions of a matrix of dimension r and K inversions of a matrix of 

dimension n. This results in a computational complexity of 𝒪(K r3 + n3 ), which can be 

significantly less than a GP based method. In the data example this results in approximately 

1/20th the resources needed as compared to the GP approach,(K = 15, n = 669, and r = 7). 

Savings increase as the experiment becomes more balanced. For example, if n = r and there 

are the same number of observations as in the data example, then a GP approach would 

require 10, 000 times more computing time than the proposed method.

3. Data Model

A data model is outlined for normal errors. Extensions to other data generating mechanisms 

from this framework are straightforward. For example, extensions to count or binomial data 

are possible using the Pólya – Gamma augmentation scheme of Polson et al. (2013).

For the data model, assume that for cross section i, i = 1, …, n, one observes Ci 

measurements at {(si, dic)}
c = 1
Ci . For error-prone observation yi(si, dic), let

yi(si, dic) = h(si, dic) + ϵic,

with ϵic ~ N(0, τ−1). Model (2) assumes the surface is centered at zero; the data model 

centers it at f0(d).

In defining hk(s) and fk(d), the covariance kernel, along with its hyper-parameters, 

determines the smoothness of the function. For 1 ⩽ k ⩽ K, let
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σk
g(s, s′) = ςkexp −θk ∥ s − s′ ∥2 , (3)

and

σk
f (d, d′) = exp −ωk ∥ d − d′ ∥2 , (4)

where ∥·∥ is the Euclidean norm, ςk is the prior variance, and θk and ωk are scale 

parameters. For the data model, ζk, defined in (2), is not used. Instead it implicitly enters the 

model through ςk = (ϕ∏ j = 1
k δ j)

−1
. To allow for a variance other than one for f0, let 

σ0
f (d, d′) = ν exp( − ω0 ∥ d − d′ ∥2).

Given these choices, the data model is

h(s, d) = f 0(d) + ∑
k = 1

K
gk(s) f k(d), (5)

and is completely specified by placing priors over {σk
f }

k = 0
K

 and {σk
g}

k = 1
K

. For the length 

parameter of the squared exponential kernels in (3) and (4), uniform distributions, Unif(a, b), 

0 < a < b, are placed over the scale parameters θk and ωk. This places equal prior probability 

over a range of plausible values allowing the smoothness of the basis to be learned. The 

value a is chosen large enough so the function is not flat, and b is chosen so that correlation 

between any two points is approximately 0. These choices are dependent upon the scale of 𝒮
and 𝒟. Care should be taken in defining b. When b is too large the resultant covariance 

matrix is essentially a white noise process. It is the author’s experience that this nearly 

diagonal matrix takes much longer to invert in many linear algebra libraries, increasing 

computation time. The sampling algorithm used for the data model and corresponding 

computer code are available in the supplement.

4. Simulation

This approach was tested on synthetic data. The dimension of 𝒮 was chosen to be 2 or 3, and 

for a given dimension, 50 synthetic datasets were created. For each dataset, a total of 1000 

cross sections of h(s, d) were observed at seven dose groups. Each dataset contained 7000 

observations.

To create a dataset, the chemical information vector si, for i = 1, …, 1000, was sampled 

uniformly over the unit square/cube. At each si, h(si, d) observations are taken at d = 0, 

0.375, 0.75, 1.5, 3.0, 4.5, and 6, from
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h(si, d) =
ν(si)d

m

κ(si)
m + dm ,

where ν(si) is the maximum response and κ(si) is the dose d where the response is at 50% of 

the ν(si). For all curves, m = 4, and to vary the response over 𝒮, a different zero-centered 

Gaussian process, z(s), was sampled at {si}i = 1
1000, for each simulation, and z(s) is used to 

define ν(si) and κ(si) with ν(si) = 11 max(z(si), 0) and κ(si) = max(4.5 − ν(si), 0). These 

choices resulted in the response being between 0 and approximately 50, and ν(si) being 

placed closer to zero for steeper dose-responses. Sample datasets used in the simulation are 

available in the supplement.

In specifying the model, priors were placed over parameters that reflect assumptions about 

the curve’s smoothness. For {σk
g( ⋅ , ⋅ )}

k = 1
K

, each θk was drawn from a discrete uniform 

distribution over the set {3, 3.05, 3.10, …, 10}. Additionally, for {σk
f ( ⋅ , ⋅ )}

k = 0
K

, each ωk ~ 

Unif(0.1, 1.5). For {ςk}
k = 1
K , δk ~ Ga(2, 1), 1 ⩽ k ⩽ K. The choice of the parameters for the 

prior over the δk were examined. The results were nearly identical with δk ~ Ga(5, 1). The 

prior specification for the model was completed by letting τ ~ Ga(1, 1).

A total of 12000 MCMC samples were taken with the first 2000 disregarded as burn in. For 

storage purposes, one of ten observations were saved. Trace plots from multiple chains were 

monitored for convergence, which occurred before 500 iterations.

To analyze the choice of K, the performance of the model was evaluated for K = 1, 2, 3, and 

15. The estimates from these models were compared with bagged multivariate adaptive 

regression splines (MARS) (Friedman, 1991) and bagged neural networks (Zhou et al., 

2002) using the ‘caret’ package in R (Kuhn et al., 2016). Additionally, treed Gaussian 

Processes (Gramacy and Lee, 2008), using the R ‘tgp’ package (Gramacy et al., 2007), were 

used in the comparison. All packages were run using their default settings; 100 bagged 

samples were used for both the MARS and neural network models. For the neural network 

model, 100 hidden layers were used. Posterior predictions from the treed Gaussian process 

were obtained from the maximum a posteriori (MAP) estimate. This was done as initial tests 

revealed estimates sampled from the posterior distribution were no better than the MAP 

estimate, but sampling from the full posterior dramatically increased computation time 

making the full simulation impossible.

For each dataset, N = 75, 125, and 175 curves were sampled to train the respective model; 

the remaining curves were compared with predictions using the mean squared predicted 

error (MSPE).

Table 1 describes the average mean squared predicted error across all simulations. For the 

adaptive tensor product model there is an improvement in prediction when increasing K. For 

the 2-dimensional case the improvement occurs from 1 to 2, but the results of K = 3 and 15 
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are almost identical to K = 2. For the 3-dimensional case, improvements are seen up to K = 3 

with identical results for K = 15. This supports the assertion that one can make K large and 

let the model adapt to the number of tensor products in the sum. When compared with the 

other approaches, the adaptive tensor product approach is superior. For N = 175, the treed 

Gaussian process, which is often the closest competitor, produces mean square prediction 

errors that are about 1.5 times greater than the adaptive tensor product approach. For smaller 

values of N, the treed GP and the bagged MARS approach failed to produce realistic results 

in many simulations. Due to this, the 5% trimmed mean provides a better estimate of center.

Figure 2, shows where the gains in prediction take place. As a surrogate for the true dose-

response function, the response intensity at d = 6 across 𝒮 is shown for ∣ 𝒮 ∣ = 2. Dark gray 

regions are areas of little-or-no dose-response activity; lighter regions have the steeper dose-

responses. Contour plots of the model’s root MSPE are overlaid on the heat maps. The top 

plot shows the adaptive tensor product performance and the bottom plot shows that of the 

treed GP, which was the closest competitor for this dataset. The adaptive tensor product is 

generally better at predicting the dose-response curve across 𝒮 and that larger gains are 

made in regions of high dose response activity.

To investigate the model’s performance in a situation comparable to the data example, an 

additional simulation is investigated. Here 50 datasets are constructed where s ∈ 𝒮 are drawn 

from a 39 dimensional zero centered multivariate normal distribution having an identity 

covariance. Identically to the above simulation, for each dataset a surface is drawn from a 

zero centered GP, z(s), with 1000 dose-response curves sampled. In this example, 650 curves 

are used to train the model with the remaining 350 curves used in a hold out sample. The 

training of each individual model is more computationally demanding, and the proposed 

approach is fit using only K = 15 due to the computer resources needed for the full 

simulation. For comparison, the bagged neural network model using the same configuration 

above is also fit. Bagged MARS were not considered because the model consistently 

underperformed the neural network approach in the other simulations. Additionally the treed 

Gaussian process ware not investigated; initial attempts at training that model failed with 

either the program failing to complete after 10 hours – implying the entire simulation 

analyzed using treed GPs would take over 20 days to complete – or crashing. For this 

simulation, the mean MSPE was 51.1 for the adaptive tensor product method and 58.8 for 

the bagged Gaussian process, which shows a 12.5% reduction in the MSPE when using the 

proposed approach.

5. Data Example

The approach is applied to data released from Phase II of the ToxCast high throughput 

platform. The AttaGene PXR assay was chosen as it has the highest number of active dose-

response curves across the chemicals tested. This assay targets the Preganene X receptor, 

which detects the presence of foreign substances and up regulates proteins involved with 

detoxification in the body. An increased response for this assay might relate to the relative 

toxicity of a chemical.
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Chemical descriptors were calculated using Mold2 (Hong et al., 2008) where chemical 

structure was described from simplified molecular-input line-entry system (SMILES) 

information (Weininger, 1988). Mold2 computes 777 unique chemical descriptors. For the 

descriptors, a principal component analysis was performed across all chemicals. This is a 

standard technique in the QSAR literature (Emmert-Streib et al., 2012, pg 44). Here, the first 

38 principal components, representing approximately 95% of the descriptor variability, were 

used as a surrogate for the chemical descriptor si.

The database was restricted to 969 chemicals having SMILES information available. In the 

assay, each chemical was tested across a range of doses between 0 μM and 250 μM with no 

tests done at exactly a zero dose. Eight doses were used per chemical, with each chemical 

tested at different doses. Most chemicals had one observation per dose; however, some of the 

chemicals tested had multiple observations per dose. In total, the dataset consisted of 9111 

data points from the 969 distinct dose-response curves.

A random sample of 669 chemicals was trained to this data, and the remaining 300 

observations were used as a hold-out sample. In this analysis, d was the log dose, where this 

value was rounded to two significant digits. The same prior specification in the simulation 

was used to train the model, except in the case of the scale parameters {θk}
k = 1
K . As the 

chemical spaces were defined differently, a discrete uniform prior was placed over the θk, 

which took values in the set {0.05, 0.06, 0.07, …, 3.05}. Here K = 15, and this choice 

provided identical inference when K = 20 or K = 10. To determine if additional tensor 

products were necessary the value of ς15 was monitored; it was less than 0.02, indicating 

additional tensor products were not needed.

To compare the prediction results, boosted MARS and neural networks were used; treed 

Gaussian processes were attempted, but the R package ‘tgp’ crashed after 8 hours during 

burn-in. The method of Low-Kam et al. (2015) was also attempted, but, the code was 

designed such that each chemical is tested at the same doses with the same number of 

replications per dose point. As the ToxCast data are not in this format, the method could not 

be applied to the data.

Figures 3 and 4 show the posterior predicted curves (solid black line) with equal tail 90% 

posterior predicted quantiles (dashed line) for eight chemicals in the hold-out sample. Figure 

3 describes the predictions for chemicals having multiple measurements per dose group, and 

figure 4 gives predictions having only a single observation per dose group. As compared 

with the observed data, these figures show the model provides accurate dose-response 

predictions across a variety of shapes and chemical profiles. The grey dashed-dotted line 

represents the prediction using the bagged neural network. These estimates are frequently 

less smooth and further o from the observed data than the adaptive tensor product splines. 

For additional confirmation the model is predicting dose-response curves, one can look a the 

chemicals from a biological mode of action perspective. For example, in Figure 3, note that 

the dose-response predictions for both Bisphenol A and 17α Hydroxyprogesterone are 

similar, because both may act similarly as they are known to bind the estrogen receptor.
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In comparison to the other models, the adaptive tensor product approach also had the lowest 

predicted mean squared error and the predicted mean absolute error for the data in the hold-

out sample. Here the model had a predicted mean squared error of 342.1 and mean absolute 

error of 11.7, as compared with values of 354.7 and 12.4 for neural networks as well as 

383.6 and 13.4 for MARS. These results are well in line with the simulation.

One can also compare the ability of the posterior predictive data distribution to predict the 

observations in the hold out sample. To do this, lower and upper tail cut-points defined by p 
were estimated from the posterior predictive data distribution. The number of observations 

below or above the upper cut-point were counted. Assuming the posterior predictive data 

distribution adequately describes the data, this count is Binomial(2p, n) where n is equal to 

the number of observations for that chemical. The 90% critical value was computed and 

compared with the count. This was done for p = 5, 10 and 15%; here, 88, 89, and 90% of the 

posterior predictive data distributions were at or below the 90% critical value.

6. Conclusions

The proposed approach allows one to model higher dimensional surfaces as a sum of a 

learned basis, where the effective number of components in the basis adapts to the surface’s 

complexity. In the simulation and motivating problem, this method is shown to be superior 

to competing approaches, and, given the design of the experiment, it is shown to require 

fewer computational resources than GP approaches. Though this approach is demonstrated 

for high throughput data, it is anticipated it can be used for any multi-dimensional surface.

In terms of the application, this model shows that dose-response curves can be estimated 

from chemical SAR information, which is a step forward in QSAR modeling. Though such 

an advance is useful for investigating toxic effects, it can also be used in therapeutic effects. 

It is conceivable that such an approach can be used in silico to find chemicals that have 

certain therapeutic effects in certain pathways without eliciting toxic effects in other 

pathways. Such an approach may be of significant use in drug development as well as 

chemical toxicity research.

Future research may focus on extending this model to multi-output functional responses. For 

example, multiple dose-responses may be observed, and, as they target similar pathways, are 

correlated. In such cases, it may be reasonable to assume their responses are both correlated 

to each other and related to the secondary input, which is the chemical used in the bioassay. 

Such an approach may allow for lower level in vitro bioassays, like the ToxCast endpoint 

studied here, to model higher level in vivo responses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Example of the problem for a 2-dimensional surface. Two 1-dimensional cross sections are 

observed (black lines) from the larger 2-dimensional surface.
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Figure 2. 
Comparison of the predictive performance between the adaptive tensor product and the treed 

Gaussian process. In the figure, the corresponding model’s root mean squared predicted 

error is given as a contour plot. The heat map represents the maximum dose response given 

the coordinate pair; lighter colors represent greater dose-response activity.
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Figure 3. 
Four posterior predicted dose-response curves (black line) with corresponding 90% equal 

tail quantiles from the posterior predictive data distribution (dotted lines) for four chemicals 

in the hold out samples having repeated measurements per dose. Grey dash-dotted line 

represents the predicted response from the bagged neural network.
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Figure 4. 
Four posterior predicted dose-response curves (black line) with corresponding 90% equal 

tail quantiles from the posterior predictive data distribution (dotted lines) for four chemicals 

in the hold out samples having repeated measurements per dose. Grey dash-dotted line 

represents the predicted response from the bagged neural network.
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Table 1

Mean squared prediction error in the simulation of the adaptive tensor product approach for four values of K 

as well as treed Gaussian processes, bagged neural networks, and bagged multivariate regression splines 

(MARS).

Adaptive TP

K=1 K=2 K=3 K=15 Neural Net MARS Treed GP

2-dimensions

N=75 76.2 69.1 69.5 69.8 108.3 215.2
1

839.7
1

N=125 56.9 48.5 48.8 48.7 92.4 205.8 158.0
1

N=175 48.5 37.7 38.4 38.3 85.1 198.8 61.1

3-dimensions

N=75 164.9 162.0 155.4 155.4 185.2 246.6
1

1521.5
1

N=125 128.6 125.0 121.0 121.0 160.4 223.4 421.3
1

N=175 106.3 102.6 99.7 100.1 150.0 217.7 163.5
1

1
Trimmed mean used with 5% of the upper and lower tails removed.
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